Abstract

General Information           Program          Registration

David Johnson, University of Waterloo: Cyclic Load Alleviation for MW Class Turbines
As wind turbine diameters continue to increase, the cyclic loading experienced by the turbine blade due to wind shear and yaw misalignment increases dramatically hindering the development of larger more efficient turbines. Based on current literature, controlling a section of the trailing edge of the turbine blade was found to reduce cyclic loading. The experimental results show that the use of a TEF was capable of manipulating the normal force coefficient by 40% and the flapwise bending moment by 20%. The relationship between the TEF angle and both blade bending moment and normal force coefficient was linear for all the cases tested. The results also show that when the TEF was centered at r/R=0.82 it could control the turbine loading more effectively. The results presented here prove that the TEF is capable of reducing cyclic loading on wind turbine blades.

The Wind Energy Institute of Canada advances the development of wind energy across Canada through research, testing, innovation and collaboration.