
Development of a NARX State-of-Charge Predictor based on Active Power Demand

Abstract 
A simple neural network state-of-charge predictor trained on
one-year of energy storage system data is presented. The
model uses the active power command and the state-of-
charge for the current time-step, and implements a nonlinear
auto-regressive network with exogenous inputs to predict the
state-of-charge at the subsequent time-step. The neural
network training algorithm is written in the Julia programming
language, independent of any existing machine learning
platforms; the resulting model is compared to one developed
using Python/TensorFlow. The simulation performance was
validated with data collected from the energy storage system
that was dispatched to follow a standard frequency regulation
duty cycle not used as part of the training data. The mean-
absolute-error between the predicted state of charge and the
validation data is shown to be less then 1%, despite the
limited data and lack of physical information about the
system.

Introduction 
The changing electrical grid as a result of the integration of
renewable resources such as wind and solar has created a
need for energy storage systems (ESS) to help balance
supply and demand of energy. As a result of this growth, the
development of precise yet computationally efficient ESS
models for long and short term state-of-charge (SOC) and
state-of-health (SOH) prediction has become necessary.

The Wind Energy Institute of Canada's (WEICan) – Figure 1
– has a 10 MW wind farm, which use a Tesla PowerPack 2 to
supply the wind turbines’ parasitic electrical loads. WEICan
does not possess any models for their ESS – which could be
used for predicting the impact of varying loads on their ESS –
and are also limited in the data they can collect for the
development of such a model.

Thus, this work had two goals: (1) to develop a predictive
model for SOC using the very limited data available from the
ESS energy management controller, and (2) to demonstrate
clearly how one can program and train their own predictive
neural network (NN) model without relying on existing
platforms.

Method
This work can be sub-divided into two main categories: the
hardware and the software.

The data used in this paper was gathered from WEICan’s
Tesla PowerPack 2 unit. This unit is rated at 111.5 KVA with
223 kWh of energy storage capacity, and is temperature
controlled. WEICan collect data using a dedicated energy
meter connected to the AC output of the ESS.

This meter provides currents, voltages, phase angles,
power, and energy. All meter data is logged at 1 Hz.
WEICan also log data via Tesla's storage management
controller (SMC), which reports battery parameters such as
the state of energy, available energy, and any active errors.
Data from Tesla's SMC is logged every 10 seconds. The
SOC is calculated by WEICan using the state of energy
parameter. It should be noted that, to ensure the ESS
remains healthy, the available energy represents a corrected
value where at 0% the ESS is not empty, nor is it full at
100%. The state of energy may also be adjusted by the
SMC during recalibration of the ESS. However, no major
recalibrations were noted in the data used for the
development of the model.

The NN training code was developed from scratch in the
Julia programming language. The input to the model is the
active power at a given time-step and the SOC at the
previous time-step. The model then predicts the SOC at the
next time-step. The initial SOC is set to be the first point in
each training set, and active power is taken from the data
directly for each point. The model knows nothing about the
inner workings of the ESS or inverter, and thus is expected
to include all losses in the system. This model structure is
shown in Figure 2 and shows the NN contains two hidden
layers with 32 nodes. Selection of the number of layers and
nodes, as well as the activation functions, was done
incrementally by increasing both gradually and assessing
the impact on the training and validation cost curves.

A complete description of the code is available in the paper
published alongside this poster.

A total of 12 months of data from the WEICan ESS was
used in this paper. The data was collected from May 2021 to
April 2022 and was collected at a rate of 0.2 Hz. This
resulted in a total of 5 760 000 raw data points per
parameter. In order to use the data for training, some data
cleaning was required.

The ESS data logger uses various keywords to indicate
various types of bad data. These keywords were replaced
with NaNs. Each NaN was replaced with an interpolated
value. The array was then reshaped to have dimensions of
time-step, training set, and parameter. Each data packet
within each set was 256 data samples long.

The final data set containing all data was of size (256,
22500, 2); thus, the set contained 22 500 data packets, with
2 parameters and 256 data samples (per parameter) in each
packet. Of the 11 520 000 data points, 65 340 were replaced
by interpolated values (0.57%).

Given the simple two-input one-output data set, data
exploration can be accomplished via a simple scatter plot,
as shown in Figure 3. This figure shows that there is a good
amount of data across the operational range of the ESS for
the variables of consideration.

Table 1 shows the extrema and median values for the
variables of interest and shows that the data set covers a
large part of the ESS operational envelope.
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Layer 1
Node 1

Layer 1
Node 32

Layer 2
Node 1

Layer 2
Node 32

Prev. Active 
Power 

Prev. State-of-
Charge

Next State-of-
Charge

# Nodes: 
32

# Hidden Layers: 2

# Nodes: 
32

Input Layer

# Nodes: 
1

Output Layer

Data Exploration:

Software Overview:

Data Cleaning:

−100 −50 0 50 100

0

20

40

60

80

100

Active Power [kW]

S
ta

te
-o

f-
C
ha

rg
e 

[%
]

Figure 3. Data exploration 

Channel Maximum Minimum Median
Active power [kW] 112.56 -114.75 0.03

State-of-Charge [%] 99.86 0.0 77.39

Table 1. Statistics for data set

Training Results:
The WEICan data set was then split randomly into training
(70%), validation (15%), and testing (15%) sets. Each set
was then divided into the input and output arrays: the input
array contained the active power from index (1:end-1,:,:),
and the output array contained the SOC from index
(2:end,:,:). Data was then scaled according to the minimum
and maximum values in Table 1.

After 3500 epochs, the training cost decreased from an
initial value of 2309 to 42 and the validation cost decreased
from an initial value of 832 to 18. The training and
validation curves are shown in Figure 4. The initially high
cost decreases rapidly in the first 100 epochs, and is not
shown in Figure 4. The training and validation curves both
show good convergence, indicating that it is unlikely the
model was over-trained.
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Figure 4. Training and validation curves

To validate the model, the ESS was subjected to the
standard frequency regulation duty cycle in Figure 5.

The ESS was subjected to the frequency regulation load
cycle from July 19-20, 2022. Active power and initial SOC
were collected and used as inputs into both NARX models
for validation; the results are shown in Figure 6. The mean-
absolute-error between the data and the Julia model is
0.53%, the absolute maximum error is 3.03%, and the
median error is 0.29%.
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Figure 5. Frequency regulation duty cycle
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Figure 6. Model validation results

Conclusion
Ultimately, a simple NARX was developed for the prediction
of state-of-charge for a black-box ESS using active power
and the previous state-of-charge as the inputs for each
prediction. The largest deviations from the experiment in the
Julia model occur during the high-power portions of the duty
cycle (20k-30k seconds and 50k-60k seconds). This may be
due to the lack of training data in those regions. Future work
on this model will involve collecting additional data at higher
power, as well as the development of a state-of-health
monitor in the form of a discriminator network, which would
be trained in parallel with the generator network presented in
this research.
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